问题
填空题
设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x+n)≥f(x),则称f(x)为M上的n高调函数,如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是______.
答案
由题意,(x+k)2≥x2在[-1,+∞)上恒成立
∴2kx+k2≥0在[-1,+∞)上恒成立
∴k>0 -2k+k2≥0
∴k≥2
故答案为:k≥2