问题
选择题
如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
其中属于有界泛函数的是( )
|
答案
函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,
∴①取x=0,则|f(x)|=1,|x|=0,故不存在常数M,使得不等式|f(x)|≤M|x|成立,因此①不是有界泛函数;
②若f(x)=x2是有界泛函数,则x2≤M|x|,取x=M+1,则有(M+1)2>M(M+1),故与假设矛盾,因此②不是有界泛函数;
③f(x)=(sinx+cosx)x≤
|x|,故③是有界泛函数;2
④f(x)=
≤x x2+x+1
|x|,故④是有界泛函数;4 3
故选C.