问题 解答题

(本题满分15分)已知数列{an}的前n项和为Sn,且anSn与2的等差中项,数列{bn}中,b1=1,点P(bnbn+1)在直线x-y+2=0上。

(1)求a1a2的值;

(2)求数列{an},{bn}的通项anbn

(3)设cn=an·bn,求数列{cn}的前n项和Tn

答案

(1)a2="4" (2)bn=2n-1,an=2n      

(3)Tn=(2n-3)2n+1+6              

(1)∵anSn与2的等差中项

Sn=2an-2              ∴a1=S1=2a1-2,解得a1=2

a1+a2=S2=2a2-2,解得a2="4                                                                           "

(2)∵Sn=2an-2,Sn-1=2an-1-2,

SnSn-1=an

an=2an-2an-1

an≠0,

,即数列{an}是等比数列∵a1=2,∴an=2n

∵点P(bnbn+1)在直线x-y+2=0上,∴bn-bn+1+2=0,∴bn+1-bn=2,

即数列{bn}是等差数列,又b1=1,∴bn=2n-1

(3)∵cn=(2n-1)2n

Tn=a1b1+ a2b2+····anbn=1×2+3×22+5×23+····+(2n-1)2n

∴2Tn=1×22+3×23+····+(2n-3)2n+(2n-1)2n+1

因此:-Tn=1×2+(2×22+2×23+···+2×2n)-(2n-1)2n+1

即:-Tn=1×2+(23+24+····+2n+1)-(2n-1)2n+1

Tn=(2n-3)2n+1+6       

单项选择题
单项选择题 A1/A2型题