问题
解答题
设f(x)在定义域内是减函数,且f(x)>0,在其定义域内判断下列函数的单调性:
(1)y=f(x)+a;
(2)y=a-f(x);
(3)y=[f(x)]2。
答案
解:(1)y=f(x)+a是减函数;
(2)y=a-f(x)是增函数,证明“略”;
(3)设x2>x1,f2(x2)-f2(x1)=[f(x2)+f(x1)][f(x2)-f(x1)]<0,
∴y=f2(x)是减函数。
设f(x)在定义域内是减函数,且f(x)>0,在其定义域内判断下列函数的单调性:
(1)y=f(x)+a;
(2)y=a-f(x);
(3)y=[f(x)]2。
解:(1)y=f(x)+a是减函数;
(2)y=a-f(x)是增函数,证明“略”;
(3)设x2>x1,f2(x2)-f2(x1)=[f(x2)+f(x1)][f(x2)-f(x1)]<0,
∴y=f2(x)是减函数。