问题 解答题
已知m2+2mn+2n2-6n+9=0,求
m
n2
的值.
∵m2+2mn+2n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴(m+n)2=0,(n-3)2=0
∴n=3,m=-3
m
n2
=
-3
9
=-
1
3

根据你的观察,探究下面的问题:
(1)已知x2+4x+4+y2-8y+16=0,求
y
x
的值;
(2)已知a,b,c是△ABC的三边长,且满足a2+b2-8b-10a+41=0,求△ABC中最大边c的取值范围;
(3)试说明不论x,y取什么有理数时,多项式x2+y2-2x+2y+3的值总是正数.
答案

(1)∵x2+4x+4+y2-8y+16=0

∴(x+2)2+(y-4)2=0,

∴(x+2)2=0,(y-4)2=0,

∴x=-2,y=4

y
x
=-
1
2

(2))∵a2+b2-8b-10a+41=0,

∴(a-5)2+(b-4)2=0,

∴(a-5)2=0,(b-4)2=0,

∴a=5,b=4

△ABC中最大边5<c<9;

(3))∵x2+y2-2x+2y+3=(x-1)2+(y+1)2+1,

且(x-1)2≥0,(y+1)2≥0,

∴x=-2,y=4

∴(x-1)2+(y+1)2+1>0,

∴多项式x2+y2-2x+2y+3的值总是正数.

单项选择题 B1型题
问答题 简答题