问题 解答题
已知点A(0,-2),B(0,4),动点P(x,y)满足
PA
PB
=y2-8

(1)求动点P的轨迹方程;
(2)设(1)中所求轨迹方程与直线y=x+2交于C、D两点;求证OC⊥OD(O为坐标原点).
答案

(1)∵A(0,-2),B(0,4),P(x,y)

PA
=(-x,-2-y),
PB
=(-x,4-y)

PA
PB
=y2-8

∴-x(-x)+(4-y)(-2-y)=y2-8

整理可得,x2=2y

(2)联立

y=x+2
x2=2y
可得x2-2x-4=0

设C(x1,y1),D(x2,y2),则x1+x2=2,x1x2=-4,

∴y1y2=(x1+2)(x2+2)=x1x2+2(x1+x2)+4=4

OC
OD
=x1x2+y1y2=0

∴OC⊥OD

选择题
问答题 简答题