问题
解答题
已知点A(0,-2),B(0,4),动点P(x,y)满足
(1)求动点P的轨迹方程; (2)设(1)中所求轨迹方程与直线y=x+2交于C、D两点;求证OC⊥OD(O为坐标原点). |
答案
(1)∵A(0,-2),B(0,4),P(x,y)
∴
=(-x,-2-y),PA
=(-x,4-y)PB
∵
•PA
=y2-8PB
∴-x(-x)+(4-y)(-2-y)=y2-8
整理可得,x2=2y
(2)联立
可得x2-2x-4=0y=x+2 x2=2y
设C(x1,y1),D(x2,y2),则x1+x2=2,x1x2=-4,
∴y1y2=(x1+2)(x2+2)=x1x2+2(x1+x2)+4=4
∵
•OC
=x1x2+y1y2=0OD
∴OC⊥OD