问题
填空题
在△ABC中,acosB+bcosA=18,则边c=______.
答案
由正弦定理得:
= a sinA
=b sinB
=2R,c sinC
又sin(A+B)=sin(π-C)=sinC,
∴acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(B+A)=2RsinC=c
又acosB+bcosA=18,∴c=18.
故答案为:18
在△ABC中,acosB+bcosA=18,则边c=______.
由正弦定理得:
= a sinA
=b sinB
=2R,c sinC
又sin(A+B)=sin(π-C)=sinC,
∴acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(B+A)=2RsinC=c
又acosB+bcosA=18,∴c=18.
故答案为:18