问题 解答题

在正三角形ABC的边ABAC上分别取DE两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上,在这种情况下,若要使AD最小,求ADAB的值.

答案

ADDB=2-3

按题意,设折叠后A点落在边BC上改称P点,显然AP两点关于折线DE对称,又设∠BAP=θ,∴∠DPA=θ,∠BDP=2θ

再设AB=aAD=x,∴DP=x 在△ABC中,

APB=180°-∠ABP-∠BAP=120°-θ

由正弦定理知: ∴BP=

在△PBD中,

,

 

∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,

∴当60°+2θ=90°,即θ=15°时,

sin(60°+2θ)=1,此时x取得最小值a,即AD最小,

ADDB=2-3.

问答题
判断题