问题
选择题
二次函数f(x)的二次项系数为正数,且对任意项x∈R都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),则x的取值范围是( )
A.x>2
B.x<-2或0<x<2
C.-2<x<0
D.x<-2或x>0
答案
∵对任意项x∈R都有f(x)=f(4-x)
∴函数f(x)的对称轴为x=2
而函数的开口向上,则函数f(x)在(-∞,2]上是单调减函数
∵1-2x2<1,1+2x-x2=-(x-1)2+2≤2,f(1-2x2)<f(1+2x-x2)
∴1-2x2>1+2x-x2,解得-2<x<0,
故选C.