问题 解答题
g(x)=px-
q
x
-2f(x)
,其中f(x)=lnx,且g(e)=qe-
p
e
-2
.(e为自然对数的底数)
(I)求p与q的关系;
(Ⅱ)若g(x)在其定义域内为单调函数,求p的取值范围;
(Ⅲ)证明:
①f(1+x)≤x(x>-1);
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N,n≥2).
答案

(I)由题意g(x)=px-

q
x
-2lnx,

又g(e)=pe-

q
e
-2,∴pe-
q
e
-2=qe-
q
e
-2

(p-q)e+(p-q)

1
e
=0,∴(p-q)(e+
1
e
)=0

e+

1
e
≠0,∴p=q

(II)由(I)知:g(x)=px-

p
x
-2lnx,g′(x)=p+
p
x2
-
2
x
=
px2-2x+p
x2

令h(x)=px2-2x+p.要使g(x)在(0,+∞)为单调函数,只需h(x)在(0,+∞)满足:

h(x)≥0或h(x)≤0恒成立.

①p=0时,h(x)=-2x,∵x>0,∴h(x)<0,∴g'(x)=-

2x
x2
<0,

∴g(x)在(0,+∞)单调递减,∴p=0适合题意.

②当p>0时,h(x)=px2-2x+p图象为开口向上抛物线,

称轴为x=

1
p
∈(0,+∞).∴h(x)min=p-
1
p
.只需p-
1
p
≥0,即p≥1时h(x)≥0,g′(x)≥0,

∴g(x)在(0,+∞)单调递增,∴p≥1适合题意.

③当p<0时,h(x)=px2-2x+p图象为开口向下的抛物线,其对称轴为x=

1
p
∉(0,+∞),

只需h(0)≤0,即p≤0时h(0)≤(0,+∞)恒成立.

∴g′(x)<0,∴g(x)在(0,+∞)单调递减,∴p<0适合题意.

综上①②③可得,p≥1或p≤0.

(III)证明:①即证:lnx-x+1≤0(x>0),

设k(x)=lnx-x+1,则k'(x)=

1
x
-1=
1-x
x

当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;

当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;

∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.即lnx-x+1≤0,

所以lnx≤x-1得证.

②由①知lnx≤x-1,又x>0,

lnx
x
x-1
x
=1-
1
x
∵n∈N*,n≥2时,令x=n2

lnn2
n2
≤1-
1
n2

lnn
n2
1
2
(1-
1
n2
),

ln2
22
+
ln3
32
++
lnn
22
1
2
(1-
1
22
+1-
1
32
++1-
1
n2
)

=

1
2
[(n-1)]-(
1
22
+
1
32
++
1
n2
)]<
1
2
[(n-1)-(
1
2×3
+
1
3×4
++
1
n(n+1)
)]

=

1
2
[n-1-(
1
2
-
1
3
+
1
3
-
1
4
++
1
n
-
1
n+1
)]

=

1
2
[n-1-(
1
2
-
1
n+1
)]=
2n2-n-1
4(n+1)

所以得证.

单项选择题 A1/A2型题
多项选择题