问题 解答题
已知平面直角坐标系上的三点A(0,1),B(-2,0),C(cosθ,sinθ)(θ∈(0,π)),且
BA
OC
共线.
(1)求tanθ;
(2)求sin(2θ-
π
4
)
的值.
答案

(1)∵A(0,1),B(-2,0),C(cosθ,sinθ),

BA
=(2,1),
OC
=(cosθ,sinθ),

BA
OC
共线,

2
cosθ
=
1
sinθ
,即2sinθ-cosθ=0,

则tanθ=

1
2

(2)∵tanθ=

1
2
>0,θ∈(0,π),

∴θ∈(0,

π
2
),

tanθ=
sinθ
cosθ
=
1
2
sin2θ+cos2θ=1
,得sinθ=
5
5
,cosθ=
2
5
5

∴sin2θ=2sinθcosθ=2×

5
5
×
2
5
5
=
4
5
;cos2θ=cos2θ-sin2θ=(
2
5
5
2-(
5
5
2=
3
5

则sin(2θ-

π
4
)=sin2θcos
π
4
-cos2θsin
π
4
=
4
5
×
2
2
-
3
5
×
2
2
=
2
10

单项选择题
问答题