问题 解答题
(1)求值:
sin65°+sin15°sin10°
sin25°-cos15°cos80°

(2)已知sinθ+2cosθ=0,求
cos2θ-sin2θ
1+cos2θ
的值.
答案

(1)原式=

sin(80°-15°)+sin15°sin10°
sin(15°+10°)-cos15°cos80°

=

sin80°cos15°-cos80°sin15°+sin15°sin10°
sin15°cos10°+cos15°sin10°-cos15°cos80°

=

sin80°cos15°-sin10°sin15°+sin10°sin15°
sin15°cos10°+cos15°sin10°-cos15°sin10°

=

sin80°cos15°
sin15°cos10°
=
cos10°cos15°
sin15°cos10°
=
cos15°
sin15°
=cot15°

=

1
tan15°
=
1
tan(45°-30°)
=
1+tan45°tan30°
tan45°-tan30°
=
3+
3
3-
3
=2+
3

(2)由sinθ+2cosθ=0,得sinθ=-2cosθ,又cosθ≠0,则tanθ=-2,

所以

cos2θ-sin2θ
1+cos2θ
=
cos2θ-sin2θ-2sinθcosθ
sin2θ+2cos2θ

=

1-tan2θ-2tanθ
tan2θ+2
=
1-(-2)2-2(-2)
(-2)2+2
=
1
6

问答题
判断题