问题
填空题
已知函数f(x)=mx-1,g(x)=x2-(m+1)x-1,若对任意的x0>0,f(x0)与g(x0)的值不异号,则实数m的值为______.
答案
当m=0时,不满足条件(可知(x)=mx-1与X Y轴都有交点)
当m>0时,画出两函数图象需满足g(
)=0且1 m
<m+1 2
得出m=1 m
;1 2
当m<0时,因为一次函数f(x)=mx-1在x趋近于正无穷大时候为负无穷大,
而二次函数g(x)=x2-(m+1)x-1,在x趋近于正无穷大时为正无穷大,不满足要求.
综上:m=
.1 2
故答案为:
.1 2