问题
解答题
已知:如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E.若∠A=30°,DE=2,求∠DBC的度数和CD的长.
答案
∵∠C=90°,∠A=30°,DE=2,
∴∠CBA=60°,
∵DE垂直平分AB,
∴AD=DB,
∴∠DBE=∠A=30°,
∴∠DBC=∠CBA-∠DBA=30°,
∴∠CBD=∠DBE,
∴DC=DE=2.
已知:如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E.若∠A=30°,DE=2,求∠DBC的度数和CD的长.
∵∠C=90°,∠A=30°,DE=2,
∴∠CBA=60°,
∵DE垂直平分AB,
∴AD=DB,
∴∠DBE=∠A=30°,
∴∠DBC=∠CBA-∠DBA=30°,
∴∠CBD=∠DBE,
∴DC=DE=2.