问题 解答题
某网站体育版块足球栏目组发起了“射手的连续进球与射手在场上的区域位置有关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
 
有关系
无关系
不知道
40岁以下
800
450
200
40岁以上(含40岁)
100
150
300
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持有关系态度的人中抽取45人,求n的值.
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体.①从这10人中选取3人,求至少一人在40岁以下的概率;②从这10人中人选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.
答案

(1)100;(2)①;②

题目分析:

解题思路:(1)根据分层抽样的特点“等比例抽样”求解即可;(2)①利用古典概型概率公式以及对立事件概率公式求解;②利用超几何分布的概率公式求概率,再求期望即可.

规律总结:1.遇到“至少”、“至多”,且正面情况较多时,可以考虑对立事件的概率;2.利用概率或随机变量的分布列以及期望、方差解决应用题时,要注意随机变量的实际意义.

试题解析:(1)由题意,得

∴n=100                                        

(2)设所选取的人中有m人在40岁以下

,解得m=4                          

①记“至少一人在40岁以下”为事件A

                                   

②X的可能取值为0,1,2,3

  

                     

∴x的分布列为

X0123
P
 

.

单项选择题
单项选择题