问题
解答题
已知直线l:(3+2λ)x+(4+λ)y+2(λ-1)=0.
(1)证明不论λ为何实数,直线l恒过定点,并求出定点坐标.
(2)求直线通过的定点到直线3x-2y=1的距离.
答案
证明:(1)由(3+2λ)x+(4+λ)y+2(λ-1)=0得:
(3x+4y-2)+λ(2x+y+2)=0,
所以有:
,3x+4y-2=0 2x+y+2=0
解得:
,x=-2 y=2
所以直线(3+2λ)x+(4+λ)y+2(λ-1)=0通过定点(-2,2).
(2)点(-2,2)到直线3x-2y-1=0的距离
d=
=|3×(-2)-2×2-1| 32+22
.11 13 13