问题 选择题
函数y=
cosx
1-sinx
的单调递增区间是(  )
A.(2kπ-
3
2
π,2kπ-
π
2
)(k∈Z)
B.(2kπ-
π
2
,2kπ+
π
2
)(k∈Z)
C.(2kπ-
2
,2kπ+
π
2
)(k∈Z)
D.(kπ-
π
2
,kπ+
π
2
)(k∈Z)
答案

由于函数y=

cosx
1-sinx
=
cos2
x
2
-sin2
x
2
cos2
x
2
+sin2
x
2
-2sin
x
2
cos
x
2
=
1-tan2
x
2
1+tan2
x
2
-2tan
x
2

=

(1+tan
x
2
)(1-tan
x
2
)
(1-tan
x
2
)
2
=
1+tan
x
2
1-tan
x
2
=tan(
π
4
+
x
2
),

令 kπ-

π
2
π
4
+
x
2
<kπ+
π
2
,k∈z,求得 x∈(2kπ-
2
,2kπ+
π
2
)(k∈Z),

故函数的增区间为(2kπ-

2
,2kπ+
π
2
)(k∈Z),

故选C.

单项选择题
问答题