问题 计算题

如图所示,水平路面CD的左侧有一固定的平台,平台上表面AB长s=3 m。光滑半圆轨道AFE竖直固定在平台上,圆轨道半径R=0.4 m,最低点与平台AB相切于A.板长L1=2 m,上表面与平台等高,小物块放在板的最右端,并随板一起向平台运动。当板的左端距离平台L=2 m时,板与物块向左运动的速度v0=8 m/s。当板与平台的竖直墙壁碰撞后,板立即停止运动,物块在板上滑动。已知板与路面的动摩擦因数μ1=0.05,物块与板上表面及轨道AB的动摩擦因数μ2=0.1,物块质量m=1 kg,取g=10 m/s2

(1)求物块进入圆轨道时对轨道上A点的压力;

(2)判断物块能否到达圆轨道的最高点E。如果能,求物块离开E后在平台上的落点到A的距离;如果不能,则说明理由。

答案

解:(1)物块随车运动撞击平台时的速度v1满足

滑块到A点时的速度v2满足

由牛顿第二定律得:

解得:FN=140 N

故滑块对轨道压力大小140 N,方向竖直向下

(2)设物块能通过圆轨道的最高点,且在最高点处的速度为v3,则有

解得:

故能通过最高点,做平抛运动,有x=v3t及

解得:x=2.4 m

判断题
单项选择题