问题 解答题
已知
a
=(
3
sinx,cosx)
b
=(cosx,cosx)

(1)若
a
b
=1
,且x∈[-
π
4
π
4
]
,求x的值;
(2)设f(x)=
a
b
,求f(x)的周期及单调减区间.
答案

(1)∵

a
b
=1,

3
sinx•cosx+cos2x=1,

3
2
sin2x+
1
2
cos2x=
1
2

sin(2x+

π
6
)=
1
2

-

π
4
≤x≤
π
4
,∴-
π
3
≤2x+
π
6
3

2x+

π
6
=
π
6

∴x=0.

(2)∵f(x)=

a
b
=sin(2x+
π
6
)+
1
2

T=

2
=π.

∵f(x)=sinx的单调减区间为[2kπ+

π
2
,2kπ+
2
](k∈Z)

2kπ+

π
2
≤2x+
π
6
≤2kπ+
2

kπ+

π
6
≤x≤kπ+
3

∴原函数单调减区间为[kπ+

π
6
,kπ+
3
](k∈Z).

多项选择题
单项选择题