问题
选择题
已知函数f(x)=-x3-sinx,(x∈R),对于任意的x1+x2>0,x2+x3>0,x3+x1>0,下面对f(x1)+f(x2)+f(x3)的值有如下几个结论,其中正确的是( )
A.零
B.负数
C.正数
D.非以上答案
答案
函数f(x)=-x3-sinx,(x∈R),是奇函数,而且f′(x)=-3x2-cosx,f′(x)<0;
函数是减函数,f(0)=0,
所以对于任意的x1+x2>0,x2+x3>0,x3+x1>0,x1>-x2,x2>x3,x3>x1即f(x1)+f(x2)<0,f(x2)+f(x3)<0,
f(x3)+f(x1<0,所以f(x1)+f(x2)+f(x3)<0.
故选B.