问题 解答题

定义在R上的函数f(x)满足对任意x,y∈R有f(x+y)=f(x)+f(y)-1,且当x<0时,f(x)<1.

(I)证明f(x)在R上是增函数;

(II)若f(3)=4,求函数f(x)在[1,3]上的值域.

答案

证明:(I)设x1、x2∈R,且x1<x2

f (x1)-f (x2)=f[x2+(x1-x2)]-f (x2

=f (x1-x2)+f (x2)-1-f (x2)=f (x1-x2)-1,

∵x1<x2,∴x1-x2<0,

∵当x<0时,f(x)<1

∴f (x1)-f (x2)=f (x1-x2)-1<0,

即f (x1)<f (x2),

∴f (x)在R上是增函数;

(II)∵f(3)=f(2+1)=f(2)+f(1)-1=3f(1)-2=4,

∴f(1)=2

∵f (x)在R上是增函数

∴函数f(x)在[1,3]上的值域为[2,4].

单项选择题
单项选择题