问题 解答题
已知函数f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)-
1
2
(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的最大值及取最大值时x的取值集合;
(3)若方程f(x)=k-1在[0,π]内有两个相异的实数根,求实数k的取值范围.
答案

(1)∵f(x)=

3
2
sin2ωx-
1
2
cos2ωx=sin(2ωx-
π
6
)
的最小正周期为π,∴ω=1;

(2)当2x-

π
6
=2kπ+
π
2
,x∈{X|X=kπ+
π
3
}
(k∈Z),f(x)max=1;

(3)∵x∈[0,π],∴2x-

π
6
∈[-
π
6
11π
6
],

∵方程f(x)=k-1在[0,π]内有两个相异的实数根,∴-1<k-1<-

1
2
或- 
1
2
<k-1<1,

解得,0<k<

1
2
1
2
<k< 2.

单项选择题
单项选择题