问题 解答题
已知:f(x)=2
3
cos2x+sin2x-
3
+1(x∈R).求:
(Ⅰ)f(x)的最小正周期;
(Ⅱ)f(x)的单调增区间;
(Ⅲ)若x∈[-
π
4
π
4
]时,求f(x)的值域.
答案

f(x)=sin2x+

3
(2cos2x-1)+1

=sin2x+

3
cos2x+1

=2sin(2x+

π
3
)+1---------------------------------------(4分)

(Ⅰ)函数f(x)的最小正周期为T=

2
=π------------------(5分)

(Ⅱ)由2kπ-

π
2
≤2x+
π
3
≤2kπ+
π
2

得2kπ-

6
≤2x≤2kπ+
π
6

∴kπ-

12
≤x≤kπ+
π
12
,k∈Z

函数f(x)的单调增区间为[kπ-

12
,kπ+
π
12
],k∈Z-----------------(9分)

(Ⅲ)因为x∈[-

π
4
π
4
],∴2x+
π
3
∈[-
π
6
6
],

∴sin(2x+

π
3
)∈[-
1
2
,1],∴f(x)∈[0,3].-----------------------------------(13分)

单项选择题
单项选择题