问题
解答题
已知f(x)=
(1)化简f(x)的表达式; (2)求f(
|
答案
(1)当n为偶数,即n=2k,(k∈Z)时,
f(x)=
=cos2(2kπ+x)•sin2(2kπ-x) cos2[(2×2k+1)π-x]
=cos2x•sin2(-x) cos2(π-x)
=sin2x,(n∈Z)cos2x•(-sinx)2 (-cosx)2
当n为奇数,即n=2k+1,(k∈Z)时f(x)=
=cos2[(2k+1)π+x]•sin2[(2k+1)π-x] cos2{[2×(2k+1)+1]π-x}
=cos2[2kπ+(π+x)]•sin2[2kπ+(π-x)] cos2[2×(2k+1)π+(π-x)]
=cos2(π+x)•sin2(π-x) cos2(π-x)
=sin2x,(n∈Z)(-cosx)2•sin2x (-cosx)2
∴f(x)=sin2x;
(2)由(1)得f(
)+f(π 2010
)=sin2502π 1005
+sin2π 2010 1004π 2010
=sin2
+sin2(π 2010
-π 2
)=sin2π 2010
+cos2(π 2010
)=1π 2010