问题 选择题
已知O、N、P在△ABC所在的平面内,且|
OA
|=|
OB
|=|
OC
|
PA
PB
=
PB
PC
=
PC
PA
NA
+
NB
+
NC
=
0
,则点O、P、N依次是△ABC的(  )
A.重心,外心,垂心B.外心,垂心,重心
C.外心,重心,垂心D.内心,重心,外心
答案

因为|

OA
|=|
OB
|=|
OC
|,所以0到顶点A,B,C的距离相等,所以O为△ABC的外心.

PA
PB
=
PB
PC
=
PC
PA
,得(
PA
-
PC
)•
PB
=0
,即
AC
PB
=0
,所以AC⊥PB.

同理可证AB⊥PC,所以P为△ABC的垂心.

NA
+
NB
+
NC
=
0
,则
NA
+
NB
=-
NC
,取AB的中点E,则
NA
+
NB
=2
NE
=
CN
所以2|NE|=|CN|,

所以N是△ABC的重心.

故选B.

问答题
单项选择题