问题 选择题
O为△ABC所在平面上的一点且满足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|=|
OC
|2+|
AB
|2,则O为(  )
A.△ABCK的三条高线的交点
B.△ABCK的三条中线的交点
C.△的三条边的垂直平分线的交点
D.△的三条内角平分线的交点
答案

OA
=
a
OB
=
b
OC
=
c
,则
BC
=
c
-
b
CA
=
a
-
c
AB
=
b
a

由题可知,|

OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2

∴|

a
|2+|
c
-
b
|2=|
b
|2+|
a
-
c
|2,化简可得
c
b
=
a
c
,即(
b
-
a
)•
c
=0,

OC
AB
=0,∴
AB
OC
,即OC⊥AB.

同理可得OB⊥AC,OA⊥BC.

∴O是△ABC的垂心.

故选A.

单项选择题
单项选择题