问题 解答题
已知向量
a
=(1,sinx),
b
=(sin2x,cosx)
,函数f(x)=
a
b
x∈[0,
π
2
]

(1)求f(x)的最小值和单调区间;
(2)若f(α)=
3
4
,求sin2α的值.
答案

f(x)=

a
b
=sin2x+sinxcosx=
1-cos2x
2
+
1
2
sin2x=
1
2
(sin2x-cos2x)+
1
2
=
2
2
sin(2x-
π
4
)+
1
2

(1)∵x∈[0,

π
2
],∴2x-
π
4
∈[-
π
4
4
]

∴当2x-

π
4
=-
π
4
,即x=0时,f(x)最小为-
2
2
×
2
2
+
1
2
=0

由-

π
2
+2kπ≤2x-
π
4
π
2
+2kπ,得-
π
8
+kπ≤x≤
8
+kπ,

π
2
+2kπ≤2x-
π
4
2
+2kπ,得
8
+kπ≤x≤
8
+kπ,

取k=0,结合x∈[0,

π
2
]

∴函数f(x)的单调增区间为[0,

8
],单调减区间为[
8
π
2
]

(2)∵f(α)=

3
4
,∴
2
2
sin(2x-
π
4
)+
1
2
=
3
4

∴sin(2x-

π
4
)=
2
4

x∈[0,

π
2
],∴2x-
π
4
∈[-
π
4
4
]

∵0<sin(2x-

π
4
)<
1
2

∴2x-

π
4
∈(0,
π
6

∴cos(2x-

π
4
)=
14
4

∴sin2x=sin(2x-

π
4
+
π
4
)=
2
2
sin(2x-
π
4
)+
2
2
cos(2x-
π
4
)=
2
2
2
4
+
14
4
)=
7
+1
4

单项选择题
单项选择题