问题
解答题
已知向量
(1)求f(x)的最小值和单调区间; (2)若f(α)=
|
答案
f(x)=
•a
=sin2x+sinxcosx=b
+1-cos2x 2
sin2x=1 2
(sin2x-cos2x)+1 2
=1 2
sin(2x-2 2
)+π 4 1 2
(1)∵x∈[0,
],∴2x-π 2
∈[-π 4
,π 4
]3π 4
∴当2x-
=-π 4
,即x=0时,f(x)最小为-π 4
×2 2
+2 2
=01 2
由-
+2kπ≤2x-π 2
≤π 4
+2kπ,得-π 2
+kπ≤x≤π 8
+kπ,3π 8
由
+2kπ≤2x-π 2
≤π 4
+2kπ,得3π 2
+kπ≤x≤3π 8
+kπ,7π 8
取k=0,结合x∈[0,
]π 2
∴函数f(x)的单调增区间为[0,
],单调减区间为[3π 8
,3π 8
]π 2
(2)∵f(α)=
,∴3 4
sin(2x-2 2
)+π 4
=1 2 3 4
∴sin(2x-
)=π 4 2 4
∵x∈[0,
],∴2x-π 2
∈[-π 4
,π 4
]3π 4
∵0<sin(2x-
)<π 4 1 2
∴2x-
∈(0,π 4
)π 6
∴cos(2x-
)=π 4 14 4
∴sin2x=sin(2x-
+π 4
)=π 4
sin(2x-2 2
)+π 4
cos(2x-2 2
)=π 4
(2 2
+2 4
)=14 4
+17 4