问题 解答题
在平面直角坐标系xOy中,
OA
=(4,0)
OB
=(1,
3
)
,点C满足∠OCB=
π
4

(Ⅰ)求
OB
BA

(Ⅱ)证明:|
OC
|=2
2
sin∠OBC

(Ⅲ)是否存在实数λ,使得
BC
BA
成立?若存在,求出λ的值;若不存在,说明理由.
答案

(Ⅰ)∵

OA
=(4,0),
OB
=(1,
3
)
,∴
BA
=
OA
-
OB
=(3,-
3

OB
BA
=3-3=0;

(Ⅱ)证明:∵

1
2
|
OC
|•|
CB
|sin∠OCB=
1
2
|
OB
|•|
CB
|sin∠OBC,

|

OC
2
2
=2sin∠OBC

|

OC
|=2
2
sin∠OBC;

(Ⅲ)假设存在实数λ,使得

BC
BA
成立,则
OC
=(3λ+1
3
-
3
λ
),
BC
=(3λ,-
3
λ)

cos

π
4
=
OC
BC
|
OC
||
BC
|
=
12
12+4
×
12
=
2
2

λ=±

3
3

即存在实数λ=±

3
3
,使得
BC
BA
成立

单项选择题
填空题