问题
解答题
已知f(x)=2cos2x+2
(1)求f(
(2)若x∈[-
(3)求y=f(-x)的单调递增区间. |
答案
(1)∵f(x)=2cos2x+2
sinxcosx+13
=2×
+1+cos2x 2
sin2x+13
=
sin2x+cos2x+23
=2sin(2x+
)+2.π 6
∴f(
) =2sin(π 4
+π 2
)+2π 6
=2cos
+2π 6
=
+2.3
(2)若x∈[-
,0],π 2
则2x+
∈[-π 6
,5π 6
],π 6
∴2x+
=-π 6
时,f(x)min=-2+2=0,π 2
2x+
=π 6
时,f(x)max=1+2=3,π 6
∴f(x)的值域是[0,3].
(3)y=f(-x)=2sin(-2x+
)+2,π 6
其增区间为:-
+2kπ≤-2x+π 2
≤π 6
+2kπ,k∈Z,π 2
解得-
-kπ≤x≤π 6
-kπ,k∈Z,π 3
∴y=f(-x)的单调递增区间是[-
-kπ,π 6
-kπ],k∈Z.π 3