问题 计算题

一个连同装备总质量为M=100kg的宇航员,在距离飞船x=45m处与飞船处于相对静止状态,宇航员背着装有质量为m0=0.5 kg氧气的贮气筒。筒上装有可以使氧气以v=50 m/s的速度喷出的喷嘴,宇航员必须向着返回飞船的相反方向放出氧气,才能回到飞船,同时又必须保留一部分氧气供途中呼吸用,宇航员的耗氧率为Q=2.5×10-4 kg/s,不考虑喷出氧气对设备及宇航员总质量的影响,则:

(1)瞬时喷出多少氧气,宇航员才能安全返回飞船?

(2)为了使总耗氧量最低,应一次喷出多少氧气?返回时间又是多少?

答案

解:(1)结合题目中的第(1)、第(2)两问不难看出,第(1)问所求的喷出氧气的质量m应有一个范围,若m太小,宇航员获得的速度也小,虽贮气筒中剩余的氧气较多,但由于返回飞船所用的时间太长,将无法满足他途中呼吸所用,若m太大,宇航员获得的速度虽然大了,而筒中氧气太少,也无法满足其呼吸作用,所以m对应的最小和最大两个临界值都应是氧气恰好用完的情况,设瞬间喷气m kg时,宇航员恰能安全返回,根据动量守恒定律可得:

mv=MV ①

宇航员匀速返回的时间为

贮气筒中氧气的总质量:m0≥m+Qt ③

代入数据可得0.05 kg≤m≤0.45 kg

(2)当总耗氧量最低时,设宇航员安全返回时,共消耗氧气△m,则△m=m+Qt ④

由①②④可得

即m=0.15 kg时,△m有极小值,故总耗氧量最低时,应一次喷出0.15 kg的氧气

将m=0.15 kg代入①②两式可解得返回时间:t=600 s

选择题
选择题