如图9所示,竖直平面内放一直角杆,杆的水平部分粗糙,竖直部分光滑,两部分各套有质量分别为mA="2.0" kg和mB="1.0" kg的小球A和B,A球与水平杆间动摩擦因数μ=0.20,A、B间用不可伸长的轻绳相连,图示位置处OA="1.5" m,OB="2.0" m.g取10 m/s2.
图9
(1)若用水平力F1沿杆向右拉A,使A由图示位置向右极缓慢地移动0.5 m,则该过程中拉力F1做了多少功?
(2)若用水平力F2沿杆向右拉A,使B以1 m/s的速度匀速上升,则在B经过图示位置上升0.5 m的过程中,拉力F2做了多少功?
(1)0.8 J (2)6.8 J
(1)A、B小球和细绳整体竖直方向处于平衡,A受到水平杆的弹力为
N=(mA+mB)g ①
则A受到的摩擦力为f=μ(mA+mB)g ②
由几何关系,sB="0.5" m ③
由能量关系,拉力F1做功为:
W1=fsA+mBgsB ④
得:W1="0.8" J ⑤
(2)设细绳与竖直方向的夹角为θ,因绳不可伸长,所以vBcosθ=vAsinθ ⑥
则=vBcotθ1= m/s, ⑦
=vBcotθ2= m/s ⑧
设拉力F2做功为W2,对系统由能量关系得W2-fsA-mBgsB=mAvA22-mAvA21 ⑨
代入数据解得W2="6.8" J ⑩