问题 解答题
△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且4sin2
B+C
2
-cos2A=
7
2

(1)求∠A;
(2)若a=7,△ABC的面积为10
3
,求b+c的值.
答案

(1)由4sin2

B+C
2
-cos2A=
7
2
得:

4[1-cos(B+C)]-cos2A=

7
2
,可得:

4cos2A-4cosA+1=0,

解得cosA=

1
2

∴∠A=

π
3

(2)由a=7及∠A=

π
3
,根据余弦定理得:a2=72=b2+c2-2bccos
π
3
①,

根据面积公式得S=10

3
=
1
2
bcsin
π
3
②,

联立①②得到(b+c)2=169,

所以b+c=13.

单项选择题
多项选择题