问题 解答题
已知向量
a
b
满足:|
a
|=1,|
b
|=2,|
a
-
b
|=
7

(1)求|
a
-
2b
|
;(2)若(
a
+2
b
)⊥(k
a
-
b
)
,求实数k的值.
答案

(1)∵|

a
|=1,|
b
|=2,|
a
-
b
|=
7

∴|

a
-
b
|2=
a
2
-2
a
b
+
b
2
=7,

a
b
=-1

|

a
-
2b
|=
(
a
-2
b
)
2
=
a
2
-4
a
b
+4
b
2
=
21

(2)∵(

a
+2
b
)⊥(k
a
-
b
)

(

a
+2
b
)•(k
a
-
b
)=0,即k
a
2
-(2k-1)
a
b
-2
b
2
=0;

∴k+(2k-1)-8=0,解得k=3

即实数k的值为3.

选择题
问答题 简答题