问题 填空题
在数列{an}中,若对任意的n∈N*,都有
an+2
an+1
-
an+1
an
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
2n-1
n2
,则数列{an}是比等差数列,且比公差t=
1
2

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是______.
答案

①若数列{an}为等比数列,且公比为q,则

an+2
an+1
-
an+1
an
=q-q=0,为常数,故等比数列一定是比等差数列,

若数列{an}为等差数列,且公差为d,当d=0时,

an+2
an+1
-
an+1
an
=1-1=0,为常数,是比等差数列,

当d≠0时,

an+2
an+1
-
an+1
an
不为常数,故不是比等差数列,故等差数列不一定是比等差数列,故正确;

②若数列{an}满足an=

2n-1
n2
,则
an+2
an+1
-
an+1
an
=
2(n+1)2
(n+2)2
-
2n2
(n+1)2
不为常数,故数列{an}不是比等差数列,故错误;

③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),可得c3=2,c4=3,故

c3
c2
-
c2
c1
=1,
c4
c3
-
c3
c2
=-
1
2

显然

c3
c2
-
c2
c1
c4
c3
-
c3
c2
,故该数列不是比等差数列,故正确;

④若{an}是等差数列,{bn}是等比数列,可举{an}为0列,则数列{anbn}为0列,显然不满足定义,即数列{anbn}不是比等差数列,故错误.

故答案为:①③

选择题
选择题