问题
填空题
设函数f(x)在区间[a,b]上满足f′(x)<0,则函数f(x)在区间[a,b]上的最小值为______,最大值为______.
答案
解析:由f′(x)<0,可知f(x)在区间[a,b]上为单调减函数,则最小值为f(b),最大值为f(a).
故答案为:f(b) f(a)
设函数f(x)在区间[a,b]上满足f′(x)<0,则函数f(x)在区间[a,b]上的最小值为______,最大值为______.
解析:由f′(x)<0,可知f(x)在区间[a,b]上为单调减函数,则最小值为f(b),最大值为f(a).
故答案为:f(b) f(a)