问题
填空题
函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值是______.
答案
由f′(x)=3x2-3=0,得x=±1,
当x<-1时,f′(x)>0,当-1<x<1时,f′(x)<0,
当x>1时,f′(x)>0,故f(x)的极小值、极大值分别为f(-1)=3,f(1)=-1,
而f(-3)=-17,f(0)=1,
故函数f(x)=x3-3x+1在[-3,0]上的最大值是3.
故答案是3.