问题 填空题
若△ABC三边的长a,b,c均为整数,且
1
a
+
1
b
+
3
ab
=
1
4
,a+b-c=8,设△ABC的面积为S,则S的最大值是______,最小值是______.
答案

∵由

1
a
+
1
b
+
3
ab
=
1
4
可得,

4b+4a+12=ab,

ab-4a-4b=12,

∴(a-4)(b-4)=28,

∴a>4,b>4,

∴a-4=1,2,4,7,14,28,

b-4=28,14,7,4,2,1,

∴a=5,6,8,11,18,32,

b=32,18,11,8,6,5,

c=29,16,11,11,16,29,

(1)当a=5,b=32,c=29时,p=

5+32+29
2
=33,S=
p(p-a)(p-b)(p-c)
=
33(33-5)(33-32)(33-29)
=4
231

(2)当a=6,b=18,c=16时,p=

6+18+16
2
=20,S=
20(20-6)(20-18)(20-16)
=8
35

(3)当a=8,b=11,c=11时,p=

8+11+11
2
=15,S=
15(15-8)(15-11)(15-11)
=4
105

(4)当a=11,b=8,c=11时,p=

11+8+11
2
=15,S=
15(15-11)(15-8)(15-11)
=4
105

(5)当a=18,b=6,c=16时,p=

18+6+16
2
=20,S=
20(20-18)(20-6)(20-16)
=8
35

(6)当a=32,b=5,c=29时,p=

32+5+29
2
=33,S=
33(33-32)(33-5)(33-29)
=4
231

可见最大值为4

231
,最小值为4
105

故答案为4

231
,4
105

单项选择题
问答题 案例分析题