问题 选择题
(理)已知数列{an},对于任意的正整数n,an=
1  (1≤n≤2009)
-2•(
1
3
)n-2009 (n≥2010)
,设Sn表示数列{an}的前n项和.下列关于
lim
n→+∞
Sn
的结论,正确的是(  )
A.
lim
n→+∞
Sn=-1
B.
lim
n→+∞
Sn=2008
C.
lim
n→+∞
Sn=
2009,(1≤n≤2009)
-1.(n≥2010)
(n∈N*)
D.以上结论都不对
答案

an=

1  (1≤n≤2009)
-2•(
1
3
)n-2009 (n≥2010)

∴a1=a2=a3=…=a2009=1,

a2010=-

2
3

a2011=-

2
9

a2012=-

2
27

Sn=1× 2009+

-
2
3
[1- (
1
3
)
n-2009
 ]
1-
1
3

=2008+(

1
3
)n-2009

lim
n→+∞
Sn=
lim
n→∞
[2008+(
1
3
)
n-2009
]

=2008.

故选B.

名词解释
单项选择题