问题
解答题
设A={x|x=a2+b2,a,b∈Z},求证: (1)若s,t∈A,则st∈A. (2)若s,t∈A,t≠0,则
|
答案
(1)设s=a2+b2,t=c2+d2,则st=(a2+b2)(c2+d2)=a2c2+a2d2+b2c2+b2d2=(ac+bd)2+(ad-bc)2
所以st∈A.
(2)由(1)得st∈A,所以可设st=m2+n2,又t≠0,所以
=s t
=st t2
=(m2+n2 t2
)2+(m t
)2,n t
令p=
,q=m t
,则n t
=p2+q2,p,q为有理数.s t