问题
解答题
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;
(2)当a=3,b=-9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.
答案
(1)f(x)=ax2+1(a>0),则f'(x)=2ax,k1=2a,g(x)=x3+bx,则g'(x)=3x2+b,k2=3+b,
由(1,c)为公共切点,可得:2a=3+b ①
又f(1)=a+1,g(1)=1+b,
∴a+1=1+b,即a=b,代入①式可得:a=3,b=3.
(2)当a=3,b=-9时,设h(x)=f(x)+g(x)=x3+3x2-9x+1
则h′(x)=3x2+6x-9,令h'(x)=0,解得:x1=-3,x2=1;
∴k≤-3时,函数h(x)在(-∞,-3)上单调增,在(-3,2]上单调减,所以在区间[k,2]上的最大值为h(-3)=28
-3<k<2时,函数h(x)在在区间[k,2]上的最大值小于28
所以k的取值范围是(-∞,-3]