若函数f(x)=x3+ax2+bx+c在R上有三个零点,且同时满足:
①f(1)=0;
②f(x)在x=0处取得极大值;
③f(x)在区间(0,1)上是减函数.
(Ⅰ)当a=-2时,求y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若g(x)=1-x,且关于x的不等式f(x)≥g(x)的解集为[1,+∞),求实数a的取值范围.
由f(1)=0得:1+a+b+c=0,f'(x)=3x2+2ax+b.
因为f(x)在x=0处取得极大值,所以 f'(0)=0,即b=0.
因为f(x)在区间(0,1)上是减函数,则f'(1)≤0,所以 3+2a≤0,所以 a≤-
.3 2
(Ⅰ) 当a=-2时,f'(x)=3x2-4x,所以 f'(2)=4
由a=-2,b=0,1+a+b+c=0,所以 c=1
所以 f(x)=x3-2x2+1,则点(2,f(2))为(2,1),
所以切线方程为:y-1=4(x-2),即y=4x-7.
(Ⅱ) f(x)-g(x)=x3+ax2-1-a-1+x=x3+ax2+x-a-2,f(1)-g(1)=1+a+1-a-2=0x3+ax2+x-a-2=(x-1)(x2+x+2)+a(x-1)(x+1) =(x-1)[x2+(1+a)x+(a+2)]
要使f(x)≥g(x)的解集为[1,+∞),必须x2+(1+a)x+(a+2)≥0恒成立
所以,△=(1+a)2-4(a+2)<0(1),或
(2)(1+a)2-4(a+2)≥0 -
≤11+a 2 f(1)=2a+4≥0
解得:(1)得1-2
<a<1+22
,解(2)得-2≤a≤1-22
.2
又∵a≤-
,∴-2≤a≤-3 2
.3 2
所以使不等式f(x)≥g(x)的解集为[1,+∞)的实数a的取值范围是[-2,-
].3 2