问题 填空题
an为(1+x)n+1的展开式中含xn-1项的系数,则
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=______.
答案

由题意可得 an=

Cn-1n+1
=
C2n+1
=
n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),

lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)=
lim
n→∞
2[(
1
1
-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)]=
lim
n→∞
2(1-
1
n+1
)=2,

故答案为:2.

单项选择题
阅读理解与欣赏