问题
填空题
记an为(1+x)n+1的展开式中含xn-1项的系数,则
|
答案
由题意可得 an=
=C n-1n+1
=C 2n+1
,n(n+1) 2
∴
=1 an
=2(2 n(n+1)
-1 n
),1 n+1
∴
(lim n→∞
+1 a1
+…+1 a2
)=1 an
2[(lim n→∞
-1 1
)+(1 2
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n
)]=1 n+1
2(1-lim n→∞
)=2,1 n+1
故答案为:2.