问题
填空题
若
|
答案
∵lim n→∞ a(1+2+3+…+n) 2n2-5n+3
=lim n→∞ a• n(n+1) 2 2n2-5n+3
=lim n→∞
n2+a 2
n a 2 2n2-5n+3
=a 4
=
.1 2
∴a=2.
故答案为:2.
若
|
∵lim n→∞ a(1+2+3+…+n) 2n2-5n+3
=lim n→∞ a• n(n+1) 2 2n2-5n+3
=lim n→∞
n2+a 2
n a 2 2n2-5n+3
=a 4
=
.1 2
∴a=2.
故答案为:2.