问题 计算题

如图6,竖直放置的斜面AB()的下端与光滑的圆弧轨道BCD的B端相切,圆弧半径为R,,圆心与A、D在同一水平面上,∠COB=q,AB与水平面的夹角也为q,现有一个质量为m的小物体从斜面上的A点无初速滑下,已知小物体与斜面AB间的动摩擦因数为m,求:

(1)小物体第一次通过C点时,对C点的压力

(2)小物体通过C点时,对C点的最小压力;

(3)小物体在斜面上能够通过的总路程。

答案

(1)mg(3-2µcosqctgq);(2)mg (3-2cosq);(3)R/m。

(1)小物体第一次到达最低点时对C点的压力;

 ............1分

由动能定理得: ............2分

     

解得:Nm=mg(3-2µcosqctgq)         ............1分

(2) 当小物体最后在BCD/(D/在C点左侧与B等高)圆弧上运动时,通过C点时对轨道压力最小。

Nn-mg=m(v/2/R,               ............1分

mgR(1-cosq)=m(v/2/2         ............2分

解得:N n=" mg" (3-2cosq).           ............1分

(3)小物体最终将在以过圆心的半径两侧q范围内运动,由动能定理得

mgRcosq -fs =0     ............2分

又 f= mmgcosq   ............1分

解得 :S=R/m     ............2分

单项选择题
问答题 简答题