问题 问答题

如图所示,在水平面内做匀速圆周运动的圆锥摆,O为悬点,O′为O在水平地面上的投影,已知绳长为a,绳与竖直方向夹角为θ=60°,OO′间距离为

3
2
a,某时刻绳被剪断,小球将落到P点,求:

(1)小球做圆周运动的速度v;

(2)P到O′的距离l.

答案

(1)小球所受合力提供向心力:mgtanθ=m

v2
asinθ

解得小球做圆周运动的线速度为:v=

gatanθsinθ
=
gatan60°•sin60°
=
3
2
ga

(2)绳被剪断,小球做平抛运动,水平方向做匀速直线运动,竖直方向做自由落体运动,则有:x=vt

3
2
a-acosθ=
1
2
gt2

代入数值解得:x=

3
a

根据几何关系得:l=

x2+(asinθ)2
=
(
3
a)2+(asin60°)2
=
15
2
a

答:(1)小球做圆周运动的速度v为

3
2
ga
.(2)P到O'的距离l为
15
2
a.

单项选择题
单项选择题