问题 填空题
已知a2+4a+1=0,且
a4+ma2+1
3a3+ma2+3a
=5
,则m=______.
答案

∵a2+4a+1=0,∴a2=-4a-1,

a4+ma2+1
3a3+ma2+3a
=
(-4a-1)2+ma2+1
3a(-4a-1)+ma2+3a

=

(16+m)a2+8a+2
(m-12)a2

=

(16+m)a2+8a+2
(m-12)(-4a-1)

=

(16+m)(-4a-1)+8a+2
(m-12)(-4a-1)
=5,

∴(16+m)(-4a-1)+8a+2=5(m-12)(-4a-1),

原式可化为(16+m)(-4a-1)-5(m-12)(-4a-1)=-8a-2,

即[(16+m)-5(m-12)](-4a-1)=-8a-2,

∵a≠0,

∴(16+m)-5(m-12)=2,

解得m=

37
2

故答案为

37
2

多项选择题
多项选择题