问题
解答题
先化简下列各式,再求值: (1)[1+
(2)先化简
(3)先化简,再求值:
(4)
|
答案
(1)原式=[1+
]•2 x+1 (x+1)(x-1) x+3
=
•x+3 x+1 (x+1)(x-1) x+3
=x-1,
当x=6时,原式=6-1=5;
(2)原式=
÷(x-2)2 x(x-2) x2-4 x
=
•x-2 x(x-2) x (x+2)(x-2)
=
,1 x+2
当x=1时,原式=
;1 3
(3)原式=
÷(a-3b)2 a(a-2b)
=5b2-(a2-4b2) a-2b
•(a-3b)2 a(a-2b)
=a(a-2b) (3b+a)(3b-a)
,2 3b+a
解方程组
,得:a+b=5 a-b=3
,a=4 b=1
当a=4,b=1时,原式=-
;2 7
(4)原式=
÷(x-2)2 x(x+1)
+4-x2 x+1 1 x+1
=
•(x-2)2 x(x+1)
+x+1 (2+x)(2-x) 1 x+1
=-
+x-2 x(x+2) 1 x+2
=2 x(x+2)
∵x2+2x-1=0,
∴x2+2x=1,即x(x+2)=1,
则原式=1