问题
解答题
已知集合A={x||x|≤3},B={x|m-1<x<2m+1},m∈R.
(1)若m=3,求(CUA)∩B;
(2)若A∪B=A,求实数m的取值范围.
答案
(1)解出集合A中的绝对值不等式得到-3≤x≤3,所以cUA={x|x>3或x<-3}
当m=3时,集合B={x|2<x<7},所以(CUA)∩B={x|3<x<7};
(2)由A∪B=A得到A⊇B,即m-1≥-3且2m+1≤3,解得m≥-2且m≤1,所以实数m的取值范围为-2≤m≤1.