问题
填空题
已知x+y=4,x2+y2=14,那么x7+y7=______.
答案
x+y=4,x2+y2=14,
∴xy=
[(x+y)2-(x2+y2)]=1,1 2
∴x3+y3=(x+y)(x2+y2-xy)=4×(14-1)=52,
∵(x4+y4)(x3+y3)=x7+y7+x3y3(x+y),
∴x7+y7=(x4+y4)(x3+y3)-x3y3(x+y),
=[(x2+y2)2-2x2y2](x3+y3)-x3y3(x+y),
=(142-2)×1×52-1×4,
=10084.
故答案为:10084.