问题 填空题

已知x+y=4,x2+y2=14,那么x7+y7=______.

答案

x+y=4,x2+y2=14,

∴xy=

1
2
[(x+y)2-(x2+y2)]=1,

∴x3+y3=(x+y)(x2+y2-xy)=4×(14-1)=52,

∵(x4+y4)(x3+y3)=x7+y7+x3y3(x+y),

∴x7+y7=(x4+y4)(x3+y3)-x3y3(x+y),

=[(x2+y22-2x2y2](x3+y3)-x3y3(x+y),

=(142-2)×1×52-1×4,

=10084.

故答案为:10084.

填空题
单项选择题