问题 解答题

将一枚硬币抛掷n次,求正面次数与反面次数之差ξ的概率分布,并求出ξ的期望Eξ与方差Dξ.

答案

见解析

解:设正面的次数是η,由题意η服从二项分布B(n,0.5),

概率分布为P(η=k)=,k=0,l,……,n,

且Eξ=0.5n,Dξ=0.25n;而反面次数为n-η,从而ξ=η-(n-η)=2η-n,

于是,ξ的概率分布为  P(ξ=2η-n)=P(η="k)=" , k=0,1,……,n;

即P(ξ=k)=P(η=)=,k=-n,-n+2,-n+4,……,n

故Eξ=E(2η-n)=2Eξ-n=2×0.5n-n=0;Dξ=D(2η-n)=22Dξ=4×0.25n=n

单项选择题 B1型题
单项选择题 B1型题